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Mode and Energy Guidance Properties of a
Slab of Inhomogeneous Medium with
Transverse Variations of the Gain Only

LAURA RONCHI ABBOZZO anp RICCARDO PRATESI

Abstract— The mode and energy guidance properties of a planar slab of
parabolic graded index medium are examined when there are transverse
variations of the gain or of the losses only.

Mode configurations and propagation constants are evaluated of the first
four even modes. The results are presented and discussed. In particular it is
found that a gain decreasing away from the symmetry plane does not favor
the existence of guided modes, as happens when the graded index medium
is not limited to a slab. Evidence is found that the presence of the
boundaries affects the mode propagation even when the caustic surface is
well inside the slab.

I. INTRODUCTION

HE PURPOSE of the analysis described in the present

paper is to study the mode guidance and the energy
guidance properties, at optical frequencies, of a planar slab
of graded index medium where there are transverse varia-
tions of the gain or of the losses only.

The possibility of mode guidance of an infinitely ex-
tended graded index medium (not limited to a slab) based
on the transverse variations of the imaginary part of its
refractive index has been extensively discussed by Marcuse
[1]. In particular, Marcuse has shown that losses increasing
or gain decreasing away from the symmetry plane x=0
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may allow mode guidance even in “inverted” media, namely
in media where the real part of the refractive index Re n(x)
is an increasing function of the distance |x| from the
symmetry plane. By the term guided mode a beam is
intended whose amplitude decays exponentially when |x|
— 0. In the opposite case, the mode is termed “leaky”.

When the graded index medium is limited to a slab, the
situation appears different, at least in the ranges of param-
eters we have considered. For example, a gain decreasing
away from the symmetry plane turns out not to favor the
existence of guided modes (Section II). On the contrary,
guided modes are found when the gain increases outwards.
Another example is that the field amplitude distribution
inside the slab turns out to be practically independent of
the value of the parameter describing the transverse varia-
tions of the gain of the medium (Section I1I). These results
seem to indicate that the mechanism of mode guidance of a
slab is substantially different from that operating in the
infinitely extended medium, and consequently, that the
conclusions valid for the infinite medium cannot be simply
extended to the case of a slab.

It is often suggested that, if a mode of the infinitely
extended medium (whose amplitude has a Gaussian distri-
bution, as is well known [1]) is sufficiently small where the
slab has its boundaries, the presence of the boundaries
does not substantially affect the mode distribution itself.
This may be true, of course, but the question arises how
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Fig. 1. A section of a slab of graded index medium
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small has the field to be at the boundaries, or how small
has the index discontinuity at the boundaries to be, in
order that the mode distribution inside the slab will not be
affected.

The criterion of comparing the width of the cross section
of the caustic surface of the beam to the width of the slab
is complicated by the fact that, for complex media and /or
modes that are leaky or have gain, there are not real caustic
surfaces. We tried to specify the caustic by means of
|Rex,|, where x_ is a (complex) value of x at which the
transverse Laplacian of the field vanishes. However, dis-
agreement between the infinitely extended medium theory
and our numerical results is found even when |Rex,| is
smaller than (say, one half of) the slab half-width (Section
1),

As to the energy guidance properties of the slab, they
may be described by the ratio R between the power gained
(from the medium) and the power lost through the
boundaries by a mode while propagating over a length, say
L, in the positive z-direction (Fig. 1). To this end, we
consider a volume V having the same section as the slab
(and wunit length in the y-direction) and length L in the
z-direction. If Pg=Pg, +P; (with Pg; <0) denotes the
power flow leaving the volume V through the two bases S2
and S1, and P, the power flow leaving the same volume
through the lateral walls S, we have

R=P,/P,,. | (1)

In the calculations, the graded index medium has been
assumed to be of parabolic type, namely

(Ie|<1)

where n, represent the value of n for x=0, and p=x/d, d
denoting the half-width of the slab. The parameter n, has
been assumed to be purely imaginary

ny= %ie (2)
with € real, so that Ren(x) turns out not to vary apprecia-
bly for |x|<d. Precisely, for d=20\, and —2.10 7* <e<
2.10 73, Ren(d) varies (increases) at most by 5.10 ™% from
Ren,. Accordingly, our medium is only negligibly of the
inverted type.

As to n,, we assumed the value n,=1.33—i 1.10 5.
Since we use the time dependence exp(—iwt), the sign of
Imn, indicates that the medium is active at x=0. The
external medium (for | x|>d) has been assumed to be real,
with n=n_,=1.5. Such values are of the order of magnitude
of those occurring in the technique of dye lasers [2], [3].

As stated above, the parameter € has been given values
from —2.10 73 to 2.10 3. Positive values of € indicate that

n2(x)=n2 —n,p?

the gain increases away from the plane x=0 (outwards),
whereas negative values of ¢ indicate that the gain di-
minishes outwards (for e<<—5.1073, the gain turns to
losses somewhere inside the slab).

In such a medium, we have evaluated the complex
propagation constant and the field configuration of the
first four even modes as a function of €. The results for the
slab have then been compared with those for an infinitely
extended medium and with those obtained with the
Wentzel- Kramer— Brillouin (WKB) approximation [4].

II. THE COMPLEX PROPAGATION CONSTANT

1t is well known that a planar stratified medium sustains
TE and TM modes. With reference in particular to TE
modes, the electric field u(x, z) satisfies the scalar wave
equation

v 2u(x, z)+k*n?(x)u(x, 2)=0. (3)
(For TM modes, see for example [5].) By ‘putting as usual
u(x, z)=y(x) exp(ikn yz) (4)

the function {(x) is obtained by solving the reduced wave
equation

v(p)+ R [n(x)—n2y]Y(p)=0.  (5)
When n%(x) is a quadratic function of x, as in (2), the

solutions of (5) are linear combinations of the parabolic
cylinder functions D X), D(— X), where (6), (7)

a2
S DO

a2
X=ap (6)
and « indicates any one of the roots of
a*=4k%dn,. (7
Even modes are simply given by
¥(p)=D,(X)+D,(~X). (8)

The eigenvalue y appearing in the generally complex
parameter v is to be determined by imposing the boundary
conditions at x=4d to the field (8), which yields
D)(X)—D)(—X)
o P —
D(X)+D(~X)
where X=X(x=d)=a and Re(n?—n2y?)'/2=0. The
right-hand side of (9) derives from the fact that the field in

the outer medium is an outgoing plane wave, with the same
z-dependence exp(ikn ,yz) as u(x, z), namely

(forxd). (10)

In the infinitely extended medium (no-boundary case),
the complex propagation constant is simply given by [1]

2m+1 172
noyz[n?)— kd n]2/2] (11)

=ikd(n2=n2y?)"*  (9)

ut(x, z)=Aexplik(n,a,x+n,yz)|

with Ren)? >0, and m is even for even modes.
Equation (9) has been solved numerically, with the help
of an electronic computer (Eclipse Data General). The
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Fig. 2. |Rex,|/d plotted versus ¢ for the first four even modes (m=

0,2,3,4). Dashed lines refer to the no-boundary theory.

results of the computations are shown in the following
Figs. 2-7.

Fig. 2 shows |Rex /d plotted versus e (solid lines).
Dashed lines represent the same quantity as deduced from
the no-boundary treatment (11). It appears from the figure
that for one and the same mode, the approximate values
tend (from above) to the exact ones when || increases,
whereas when |¢| is small enough, the approximate values
are closer to x =0 than the exact ones. Thus, if in some way
Rex, specifies the caustic, it turns out that for |e| small
enough, the no-boundary caustic is closer to the plane x=0
than the exact one. Moreover, it appears that, in the
numerical cases examined, the mode m=0 has the caustic
internal to the slab for |e]>2.10 "%, while the caustic of the
mode m=2 enters the slab at |e|~1.7 107>, It may be
noted that the position of the caustic is substantially inde-
pendent of the sign of €, namely of the sense of Im n(x),
whether outwards or inwards.

Fig. 3 shows Ren vy plotted versus m for several values
of €. Dashed lines refer to the no-boundary case. It appears
that, for the no-boundary case, Re ny depends appreciably
on €, contrarily to what happens with the solutions of (9).
It may be worth noting that the solid line is well fitted by
the function

(m+1)

Ren,y=Re
o 329%n,

(12)
where 1=d /A, which expression may be deduced by as-
suming the slab to be made of a homogeneous medium
with refractive index Ren,,.

Fig. 4 shows Im n y plotted vs € for the first four even
modes (solid lines). Dashed lines represent the values of
Imn_y deduced from the no-boundary treatment, and are

no—
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Fig 3. Re(n,y) plotted versus m for several values of €. Dashed lines
refer to the no-boundary theory.
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Fig. 4. Im(n,y) plotted versus €. Dashed lines refer to the no-boundary

theory for the first two even modes only.

apparently inadequate to be applied to the slab— a result
already found in the numerical cases examined in [4]. Solid
lines are unexpectedly straight lines over the entire consid-
ered range of e. It is worth noting that the straight line
labelled m=0 is in a good agreement, for |¢| larger than
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~ 10 73, with the values deduced from the WKB treatment,
in the form valid when the caustic is inside the slab (see
Appendix). Conversely, the slope common to the straight
lines corresponding to the higher order modes may be
deduced from the WKB treatment in the form valid for the
cases when the caustic is out of the slab (in other words,
when |e| is small enough). This yields

(m+ 1)2 €
R2an’n,An 121,

Imn,y=Imn,+Re

] (13)

where An=(n%—n2)"/2

Fig. 4, and the comparison with the WKB treatment,
seem to indicate that the fundamental mode behaves differ-
ently from the higher order modes. Roughly speaking, we
would say that the higher order modes are controlled by
the dielectric discontinuity #,—n, as in conventional ho-
mogeneous thin-film guiding, whereas the fundamental
mode is controlled both by the discontinuity at the
boundary and by the continuous inhomogeneity of the
medium. This however does not mean that the fundamen-
tal mode is a “guided” mode in all cases, in the sense
specified in the Introduction. It is easily shown that a mode
is leaky, and therefore its amplitude increases exponen-
tially away from the slab, when Im »n_y>0, while a mode is
guided, and its energy peaks up inside the slab and de-
creases exponentially away from it, when Im #n,y<<0. This
follows simply, with reference to (10), by noting that

(n,a,Y+(n,y)=n (14)

Clearly, if n, is real, as we assumed, Im n,a, has the sign
opposite to that of Imn_y. As a consequence, we have that
a mode is of guided type, if its gains in the medium enough
to compensate for the radiation losses through the lateral
walls, since in this case Im n y<<0. Otherwise, if the losses
through the walls exceed the power provided by the
medium, Im n ;y>0 and the mode is leaky.

The same conclusion (namely that a mode is leaky or
guided according as Imn,y is positive or negative) does
not hold for the modes derived from the no-boundary
theory, since for them (14) cannot apply. A mode whose
amplitude decreases away from a region near the plane
x=0 is always found in the infinitely extended medium [1],
and is “stable” too, for e<<0.

III.  Mope CONFIGURATIONS AND POWER FLoW

Once the propagation constant kn,y is determined for
the various modes, (8) with » and « given by (6) and (7)
allows one to evaluate the transverse distribution ¢(p) of
the field. Fig. 5 shows the amplitude |{(p)|, normalized to
1 at p=0, for the first four modes we have examined. The
dashed lines indicate the slight variations of |{(p)| depen-
dent on e. It appears that the amplitude configurations are
largely independent of €, and in particular of its sign.

The phase distributions of the two modes m=0 and
m=2 are shown in Fig. 6 for |¢|=2.10 3. From such a
figure and from Fig. 5 it turns out that changing € into —e¢
changes a particular mode into one which is approximately
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Fig. 5. Amplitude distributions |{(p)| of the first four even modes.
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Fig. 6. Phase distributions argy(p) of the first two even modes
(m=0,2).

the complex conjugate of the original, almost everywhere
in the range —d<x<cd. Qualitatively, this is expected,
since n?(x, —¢) is almost the complex conjugate of n?(x, €).
However, at x=~d, the phase has a jump of about +4 7 in
both cases. This distortion of the wavefronts near the
boundaries is not predicted by the no-boundary treatment,
but it is physically necessary, in the case ¢>0, for the
energy to flow towards the exterior of the slab. Accord-
ingly, it is expected that the presence of the refractive index
discontinuity at the walls of the slab will affect the field
inside the slab in all cases when the gain increases out-
wards or the losses decrease outwards, independently of
how small the field is at the walls.

Fig. 7 shows the ratio R defined by (1), plotted versus e.
With reference to a portion of slab of length L, extending
from z to z+ L, we can write

.e—2kzIm(n(,v)fllp(p);[;*(p)dp
0
1 Re(ne,)

— TN Teel —2kLIm(n,y) _ 1
2wp Im(n,y) [e ]

eIy (1) (1),

P, =

Hence
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Fig. 7. The power ratio R, defined by (1), plotted versus € for the first
four even modes.

Re(rn, y)Im(n -1
r= g2 = -2k R 1)
[ 4(0)4(0)do. (15)

The linear trend of all modes in Fig. 7 is due to the fact
that, in the considered range of ¢, both Re(n,y) and
|¢(p)| are practically independent of €, as appears from
Figs. 3 and 5, respectively, Im(#n_y) is a linear function of €
for all modes (see Fig. 4), and Re(n «,) turns out to be
almost independent of ¢, according to the relation

Re(n,a,)=Re(n? —niyZ)lﬂz[ni ——(Reno)z]‘/z.

(16)

1V. CoNCLUSION

In the present paper we have investigated the mode and
energy guidance properties of a slab of graded index
medium where there are transverse variations of Imn(x)
only.

The new, slightly surprising findings are that: 1) the
mode configurations and the real part of the propagation
constant turn out to be practically independent of the
parameter ¢ describing the gradIm n(x); 2) the imaginary
part of n,y and the power ratio R between the power
gained and the power lost through the boundaries turn out
to be linear functions of e.

This occurs over a range of values of € sufficiently large
(about two orders of magnitude larger than the values
achievable in flashlamp pumped dye lasers) to let the
imaginary part of the propagation constants pass from
positive values (leaky modes) to negative values (amplified
modes).

For the higher order modes these behaviors are described
with a good agreement by the WKB approximation in the
form it takes for small |¢|. For the fundamental mode,
however, good results are derived from the WKB ap-
proximation, in the form valid when the caustic is inside
the slab, only for values of € not too small.

The physical interpretation of these results seems to be
that the presence of the boundaries affects substantially the
modal propagation even when the field is very small at the
boundaries, or, in other words, when the gain (loss) inho-
mogeneities are so large to shift the caustic of the mode
into the central region of the slab. This conclusion is also
supported by the fact that the wavefronts near the
boundaries have to present in any case the curvature of a
diverging beam, as noted in connection with Fig. 6.

Another result which may be worth noting in Fig. 4 is
that the gain of the low order modes (in our case of the
fundamental mode) may be smaller than the gain of some
higher order modes. This happens when ¢ is sufficiently
large, namely when the gain near the boundaries of the
slab is sufficiently larger than the gain in the central
region. In these conditions, the low order modes which are
confined in the low-gain region (Fig. 2) may gain less than
the higher-order modes, in spite of the fact that the last
ones suffer larger radiation losses through the boundaries.
This phenomenon has been known for a long time.

APPENDIX

The numerical results reported in Figs. 3 and 4 have
been compared with those derivable from the WKB ap-
proximation, by using the formulas of [4], and by generaliz-
ing them to include all cases of interest in the ranges of
parameters here examined. Such formulas are as follows:

When Rep, > 1, where p.=x,_/d=n [(1—7?)n,]"/?, the
field Y(p) of even modes can be written as

$(0)=[8"(p)]"*cos [kdS(p)] (A.1)
where p=x/d, $'=dS /dp and
s(e)= [[n(e)~n2y*] dp. (A2)
When Rep, ~1, one has
Y(p)=aAi(—Y)+bBi(-Y) (A.3)
where Ai and Bi denote the Airy functions [7] and
Y=(k%*)"*(o,~p)
f:—d%nz(p) .
a=(kd/f)"7'"/cos( 9~ T
b=(kd/f)"*n"/cos( ¢+ 7 |
¢=kdS(p,). (A.4)

Finally, if Rep, <1, one has
11'(9) — [S’(p)] _l/z[a/eide(p) +he vlde(p)] (A.5)
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where
a’'=2"% T F /D eos(pt 7 /4)
b'=20"1e!@=E"/ D o5 (¢ F 7 /4). (A.6)
In (A.6), =0 or =1 according as Imn, >0 or Im n, <0,

and the upper (lower) signs hold for Imn, >0 (Imn, <0).
In [4], only the formulas valid for Im n, >0 were reported.
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Short Papers

Two Simple Methods for the Measurement of the
Dielectric Permittivity of Low-Loss Microstrip
Substrates

R. M. PANNELL anp B. W. JERVIS

Abstract— Two simple methods are presented for the measurement of
the dielectric permittivity of low-loss microstrip substrates. The permittivity
associated with a specific length of microstrip may be obtained. The
methods are not wasteful of substrate material.

1. INTRODUCTION

During an investigation of attenuation in microstrip transmis-
sion lines [1] built using cheap substrate materials, it became
necessary to measure the dielectric permittivity of the substrate
beneath the top conductor in order to design for the required
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characteristic impedance. Two simple methods of doing this were
invented and will be referred to as the Reflection Cancellation
Method and the Line Balancing Method.

The characteristic impedance Z, (2) of a microstrip line is
partly determined by the dielectric permittivity e, of the substrate
material [2]. Further, because microstrip is a mixed-dielectric
transmission line it exhibits an effective dielectric permittivity,
€,ci» Which is less than e, [2]. At high frequencies dispersion
becomes significant and the frequency-dependent permittivity,

€cre(f) given by [3]
Ereff(f)———er_

€ T € eff 5 ' (1)

1+G(1/1,)

where G=0.6+0.009Z, and f, = 107Z, /8 wh must be used.
Relatively simple techniques for measuring the average permit-
tivity of a complete microstrip substrate have appeared in the
literature, Some have involved producing special resonant struc-
tures [4]-[7] and are wasteful of possibly expensive substrate
material. Less wasteful approaches [8]-[10] have involved de-
termining the permittivity from the measured cavity resonance
frequencies of the double metal-clad substrate prior to etching.
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