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Mode and Energy Guidance Properties of a
Slab of Inhomogeneous Medium with

Transverse Variations of the Gain Only

LAURA RONCHI ABBOZZO AND RICCARDO PRATESI

A bstract— The mode and energy goidance properties of a planar slab of

parabolic graded index medium are examined when there are transverse

variations of the gain or of the losses only.

Mode configurations and propagation constants are evahrated of the first

four even modes. The resnlts are presented and dkeussed. In particular it k
found that a gain decreasing away from the symmetry plane does not favor

the existence of goided modes, as happens when the graded index medinm

is not fimited to a slab. Evidence is found that the presence of the

boundaries affects the mode propagation even when the canstic surface is

well inside the slab.

I. INTRODUCTION

T HE PURPOSE of the analysis described in the present

paper is to study the mode guidance and the energy

guidance properties, at optical frequencies, of a planar slab

of graded index medium where there are transverse varia-

tions of the gain or of the losses only.

The possibility of mode guidance of an infinitely ex-

tended graded index medium (not limited to a slab) based

on the transverse variations of the imaginary part of its

refractive index has been extensively discussed by Marcuse

[1]. In particular, Marcuse has shown that losses increasing

or gain decreasing away from the symmetry plane x = O
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may allow mode guidance even in “inverted” media, namely

in media where the real part of the refractive index Re n ( x )

is an increasing function of the distance Ix I from the

symmetry plane. By the term guided mode a beam is

intended whose amplitude decays exponentially when Ix I

~ cc. In the opposite case, the mode is termed “leaky”.

When the graded index medium is limited to a slab, the

situation appears different, at least in the ranges of param-

eters we have considered. For example, a gain decreasing

away from the symmetry plane turns out not to favor the

existence of guided modes (Section II). On the contrary,

guided modes are found when the gain increases outwards.

Another example is that the field amplitude distribution

inside the slab turns out to be practically independent of

the value of the parameter describing the transverse varia-

tions of the gain of the medium (Section III). These results

seem ~to indicate that the mechanism of mode guidance of a

slab N substantially different from that operating in the

infinitely extended medium, and consequently, that the

conclusions valid for the infinite medium cannot be simply

extended to the case of a slab.

It is often suggested that, if a mode of the infinitely

extended medium (whose amplitude has a Gaussian distri-

bution, as is well known [1]) is sufficiently small where the

slab has its boundaries, the presence of the boundaries

does not substantially affect the mode distribution itself.

This may be’ true, of course, but the question arises how
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Fig. 1. A section of a slab of graded index medium

small has the field to be at the boundaries, or how small

has the index discontinuity at the boundaries to be, in

order that the mode distribution inside the slab will not be

affected.

The criterion of comparing the width of the cross section

of the caustic surface of the beam to the width of the slab

is complicated by the fact that, for complex media and/or

modes that are leaky or have gain, there are not real caustic

surfaces. We tried to specify the caustic by means of

IRexc[, where xc is a (complex) value of x at which the
transverse Laplacian of the field vanishes. However, dis-

agreement between the infinitely extended medium theory

and our numerical results is found even when /Re XCI is

smaller than (say, one half of) the slab half-width (Section

III).

As to the energy guidance properties of, the slab, they

may be described by the ratio R between the power gained

(from the medium) and the power lost through the

boundaries by a mode while propagating over a length, say

L, in the positive z-direction (Fig. 1). To this end, we

consider a volume V having the same section as the slab

(and unit length in the y-direction) and length L in the

z-direction. If P~ = P~2 + P~l (with P~, <O) denotes the

power flow leaving the volume V through the two bases S2

and S1, and Pw the power flow leaving the same volume

through the lateral walls S ~, we have

R= P~/Pw. (1)

In the calculations, the graded index medium has been

assumed to be of parabolic type, namely

n2(x)=n~ —n2p2 (lPl~l)

where n ~ represent the value of n for x= O, and p= x/d, d

denoting the half-width of the slab. The parameter n ~ has

been assumed to be purely imaginary

(2)

with c real, so that Re n(x ) turns out not to vary apprecia-

bly for /x/ <d. Precisely, for d=20A, and –2.10-3 <c<

2.10 ‘3, Re n(d ) varies (increases) at most by 5. 10’s from

Re no. Accordingly, our medium is only negligibly of the

inverted type.

As to no, we assumed the value no = 1.33–i 1.10–5.

Since we use the time dependence exp ( – itit), the sign of
Im n ~ indicates that the medium is active at x= O. The

external medium (for \x I> d ) has been assumed to be real,

with n = n, = 1.5. Such values are of the order of magnitude

of those occurring in the technique of dye lasers [2], [3].

As stated above, the parameter c has been given values

from – 2.10’3 to 2.10 ‘3. Positive values of c indicate that

the gain increases away from the plane x= O (outwards),

whereas negative values of ( indicate that the gain di-

minishes outwards (for c< – 5.10-5, the gain turns to

losses somewhere inside the slab).

In such a medium, we have evaluated the complex

propagation constant and the field configuration of the

first four even modes as a function of c. The results for the

slab have then been compared with those for an infinitely

extended medium and with those obtained with the

Wentzel- Kramer- Brillouin (WKB) approximation [4].

11. THE COMPLEX PROPAGATION CONSTANT

It is well known that a planar stratified medium sustains

TE and TM modes. With reference in particular to TE

modes, the electric field U(X, z) satisfies the scalar wave

equation

V* Z4(X, Z)+k%lz(x)u(x, Z)=o. (3)

(For TM modes, see for example [5].) By putting as usual

U(X, z)=~(x)exp(iknoyz) (4)

the function $(x ) is obtained by solving the reduced wave

equation

W’(p) +k2d2[n2(x)-n~y 2]~(P)=o. (5)

When n2(x ) is a quadratic function of x, as in (2), the

solutions of (5) are linear combinations of the parabolic

cylinder functions DV( X), DV( – X), where (6), (7)

‘=–; +k2d2n21–y20
(X2

x= ap (6)

and a indicates any one of the roots of

a4 =4k2d2n2. (7)

Even modes are simply given by

+( P)= MX)+DV(-X). (8)

The eigenvalue y appearing in the generally complex

parameter v is to be determined by imposing the boundary

conditions at x = d to the field (8), which yields

D;(x) –D;(–x) ‘2 * 1/2
=ikd(n~ —noy

“DV(X)+DU(–X)
) (9)

where ~= X(x=d)=a and Re(n~ –n~y2)1/2>0. The

right-hand side of (9) derives from the fact that the field in

the outer medium is an outgoing plane wave, with the same

z-dependence exp( ikn ~yz ) as U(X, z), namely

ue(x, z)= Aexp[ik(n,a,x+noyz)] (forx d). (10)

In the infinitely extended medium (no-boundary case),

the complex propagation constant is simply given by [1]

[ 12m+ 1 1,2 1/2

‘“y= ‘:– kd ‘2
(11)

with Re n!/2 >0, and m is even for even modes.

Equation (9) has been solved numerically, with the help

of an electronic computer (Eclipse Data General). The
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Fig. 2. lRe x< I/d plotted versus c for the first four even modes (M=

0,2,3, 4). Dashed lines refer to the no-boundary theory.

results of the computations are shown in the following

Figs. 2-7.

Fig. 2 shows lRe XCI/d plotted versus [ (solid lines).

Dashed lines represent the same quantity as deduced from

the no-boundary treatment (11 ). It appears from the figure

that for one and the same mode, the approximate values

tend (from above) to the exact ones when Ic I increases,

whereas when Ic I is small enough, the approximate values

are closer to x = O than the exact ones. Thus, if in some way

Re XC specifies the caustic, it turns out that for Ic I small

enough, the no-boundary caustic is closer to the plane x = O

than the exact one. Moreover, it appears that, in the

numerical cases examined, the mode m = O has the caustic

internal to the slab for Ic \>2.10”, while the caustic of the

mode m=2 enters the slab at 1~1~ 1.7 10–3. It may be

noted that the position of the caustic is substantially inde-

pendent of the sign of c, namely of the sense of Im n(x),

whether outwards or inwards.

Fig. 3 shows Re n .Y plotted versus m for several values

of ~. Dashed lines refer to the no-boundary case. It appears

that, for the no-boundary case, Re n .Y depends appreciably

on c, contrarily to what happens with the solutions of (9),

It maybe worth noting that the solid line is well fitted by

the function

‘enOy=Re[no-(:xl’12)
where q = d/A, which expression may be deduced by as-

suming the slab to be made of a homogeneous medium

with refractive index Re n ~.

Fig. 4 shows Im n ~y plotted vs ~ for the first four even

modes (solid lines). Dashed lines represent the values of

Im nOy deduced from the no-boundary treatment, and are
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Fig 3. Re( n ~y) plotted versus m for several vahres of c. Dashed lines
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Fig. 4. Im ( n ~y) plotted versus c. Dashed lines refer to the no-boundary

theory for the first two even modes only.

apparently inadequate to be applied to the slab— a result

already found in the numerical cases examined in [4]. Solid

lines are unexpectedly straight lines over the entire consid-

ered range of (. It is worth noting that the straight line

labelled m= O is in a good agreement, for Ic I larger than
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E 10 ‘3, with the values deduced from the WKB treatment,

in the form valid when the caustic is inside the slab (see

Appendix). Conversely, the slope common to the straight

lines corresponding to the higher order modes may be

deduced from the WKB treatment in the form valid for the

cases when the caustic is out of the slab (in other words,

when [c [ is small enough), This yields

ImnOy=ImnO+Re

[

(rn+l)2 , 1— (13)
32q3nOAn – 12no

where An=(n~ –n~)l/2.

Fig. 4, and the comparison with the WKB treatment,

seem to indicate that the fundamental mode behaves differ-

ently from the higher order modes. Roughly speaking, we

would say that the higher order modes are controlled by

the dielectric discontinuity y ri. – n, as in conventional ho-

mogeneous thin-film guiding, whereas the fundamental

mode is controlled both by the discontinuity at the

boundary and by the continuous inhomogeneity of the

medium. This however does not mean that the fundamen-

tal mode is a “guided” mode in all cases, in the sense

specified in the Introduction. It is easily shown that a mode

is leaky, and therefore its amplitude increases exponen-

tially away from the slab, when Im n ~y >0, while a mode is

guided, and its energy peaks up inside the slab and de-

creases exponentially away from it, when Im n .y <0. This

follows simply, with reference to (10), by noting that

(n,aJ2+(nOy)2=n~. (14)

Clearly, if n, is real, as we assumed, Im n ,a= has the sign

opposite to that of Im n .y. As a consequence, we have that

a mode is of guided type, if its gains in the medium enough

to compensate for the radiation losses through the lateral

walls, since in this case Im n .Y <0. Otherwise, if the losses

through the walls exceed the power provided by the

medium, Im n ~y>0 and the mode is leaky.

The same conclusion (namely that a mode is leaky or

guided according as Im n .Y is positive or negative) does

not hold for the modes derived from the no-boundary

theory, since for them (14) cannot apply. A mode whose

amplitude decreases away from a region near the plane

x= O is always found in the infinitely extended medium [1],

and is “stable” too, for c< O.

III. MODE CONFIGURATIONS AND POWER FLOW

Once the propagation constant h .Y is determined for

the various modes, (8) with v and a given by (6) and (7)

allows one to evaluate the transverse distribution $(p) of

the field. Fig. 5 shows the amplitude I+( p )1, normalized to

1 at p= O, for the first four modes we have examined. The

dashed lines indicate the slight variations of 1J(P)I depen-

dent on c. It appears that the amplitude configurations are
largely independent of c, and in particular of its sign.

The phase distributions of the two modes m= O and

rn=2 are shown in Fig. 6 for Icl =2.10–3. From such a

figure and from Fig. 5 it turns out that changing e into – c

changes a particular mode into one which is approximately

m,’

0’

rn.e

——

Fig. 5. Amplitude distributions I+( p)1of the first four even modes

+-=4-cz
-z J ./. 1

Fig. 6. Phase distributions arg +( p) of the first two even modes

(nl=o,2).

the complex conjugate of the original, almost everywhere

in the range – d<.x <d. Qualitatively, this is expected,

since n2(x, – c) is almost the complex conjugate of n2(x, c).

However, at x ~ d, the phase has a jump of about + ~ r in

both cases. This distortion of the wavefronts near the

boundaries is not predicted by the no-boundary treatment,

but it is physically necessary, in the case c> O, for the

energy to flow towards the exterior of the slab. Accord-

ingly, it is expected that the presence of the refractive index

discontinuity at the walls of the slab will affect the field

inside the slab in all cases when the gain increases out-

wards or the losses decrease outwards, independently of

how small the field is at the walls.

Fig. 7 shows the ratio R defined by (l), plotted versus 6.

With reference to a portion of slab of length L, extending

from z to z+ L, we can write

Ps=~Re(nOy)[e-’~’’mf”o~J _lj

.e-’k,Im(n,>7) (’+(p) **(p)dp
Jo

.e-2~z1m(H~Y)~( l)tJ$(l).

Hence
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Fig, 7. The power ratio R, defined by (l), plotted versus c for the first
four even modes.

Re(~.y)Im(~.y)+..zkd
Re(ncae) [!(1) +*(1)]-’

w

j’+(d+”(ddp (15)
o

The linear trend of all modes in Fig. 7 is due to the fact

that, in the considered range of c, both Re(nO y) and

IIJJ(P)I are practically independent of c, as appears from
Figs. 3 and 5, respectively, Im( n ~y) is a linear function of c

for all modes (see Fig. 4), and Re (n ,ae) turns out to be

almost independent of f, according to the relation

Re n,ae)=Re(n~ –iZ~y2)1’2R[n$ –(Ren O)2]1’2.

(16)

IV. CONCLUSION

ln the present paper we have investigated the mode and

energy guidance properties of a slab of graded index

medium where there are transverse variations of Im n ( x )

only.

The new, slightly surprising findings are that: 1) the
mode configurations and the real part of the propagation

constant turn out to be practically independent of the

parameter c describing the grad Im n(x); 2) the imaginary

part of n .Y and the power ratio R between the power

gained and the power lost through the boundaries turn out

to be linear functions of c.

This occurs over a range of values of c sufficiently large

(about two orders of magnitude larger than the values

achievable in flashlamp pumped dye lasers) to let the

imaginary part of the propagation constants pass from

positive values (leaky modes) to negative values (amplified

modes).

For the higher order modes these behaviors are described

with a good agreement by the WKB approximation in the

form it takes for small Ic 1. For the fundamental mode,

however, good results are derived from the WKB ap-

proximation, in the form valid when the caustic is inside

the slab, only for values of ~ not too small.

The physical interpretation of these results seems to be

that the presence of the boundaries affects substantially the

modal propagation even when the field is very small at the

boundaries, or, in other words, when the gain (loss) inho-

mogeneities are so large to shift the caustic of the mode

into the central region of the slab. This conclusion is also

supported by the fact that the wavefronts near the

boundaries have to present in any case the curvature of a

diverging beam, as noted in connection with Fig. 6.

Another result which may be worth noting in Fig. 4 is

that the gain of the low order modes (in our case of the

fundamental mode) may be smaller than the gain of some

higher order modes. This happens when c is sufficiently

large, namely when the gain near the boundaries of the

slab is sufficiently larger than the gain in the central

region. In these conditions, the low order modes which are

confined in the low-gain region (Fig. 2) may gain less than

the higher-order modes, in spite of the fact that the last

ones suffer larger radiation losses through the boundaries.

This phenomenon has been known for a long time.

APPENDIX

The numerical results reported in Figs. 3 and 4 have

been compared with those derivable from the WKB ap-

proximation, by using the formulas of [4], and by generaliz-

ing them to include all cases of interest in the ranges of

parameters here examined. Such formulas are as follows:

When RepC>?l, where pc=xC/d=n O[(l–y2)n2]1/2, the

field $(p) of even modes can be written as

4(p)= [S’(p)] -’’2cos[kdS(p)] (Al)

where p= x/d, S’= dS/dp and

s(p)= ~”[n*(p)-iz$y2]’/2dp. (A.2)

When Re pCH 1, one has

Y(p)= EAi(– Y)+~Bi(– Y) (A.3)

where Ai and Bi denote the Airy functions [7] and

Y=(k2d2f)’’3(pC–p)

f=–$n*(p)
P=P<

()Z=(kd/f )“6#2cos ~— ;

()
;=(kd/f )“6r’12cos $+:

@=kdS(pC). (A.4)

Finally, if Re PC<<1, one has

~(p) = [S’(P)] - 1’2[a’ei~dSI”J +b’e -’~d~(~)] (A.5)
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where

~?=Z-~e-I(0~~f4JCOS(@~m/A)

b’= 26- le’(o&”/4)cos (C#Iz n/4). (A.6)

In (A.6), 8=0 or 8=1 according as Imn2>0 or Imn2<0,

and the upper (lower) signs hold for Im n ~ >0 (Im n ~ < O).

In [4], only the formulas valid for Im n ~ >0 were reported.
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Short Papers

Two Simple Methods for the Measurement of the

Dielectric Permittivity of Low-Loss Microstrip

Substrates

R. M. PANNELL AND B. W. JERVIS

Abstract — Two simple methods are presented for the measurement of

the dielectric permittivity of low-loss microstrip substrates. The perrttittivity

associated with a speeific length of microstrip may be obtained. Tbe

methods are not wasteful of substrate material.

I. INTRODUCTION

During an investigation of attenuation in rnicrostnp transmis-

sion lines [1] built using cheap substrate materials, it became

necessary to measure the dielectric permittivity of the substrate

beneath the top conductor in order to design for the required
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characteristic impedance, Two simple methods of doing this were

invented and will be referred to as the Reflection Cancellation

Method and the Line Balancing Method.

The characteristic impedance ZO ($2) of a microstrip line is

partly determined by the dielectric permittivity c, of the substrate

material [2]. Further, because rnicrostrip is a mixed-dielectric

transmission line it exhibits an effective dielectric perrnittivity,

C,,ff, which is less than c, [2]. At high frequencies dispersion

becomes significant and the frequency-dependent permittivity,

E,.ff(.f) given by [31

(1)

where G= 0.6+0.009 ZO and fP = 107Zo/8 wh must be used.

Relatively simple techniques for measuring the average permit-

tivity of a complete microstnp substrate have appeared in the

literature, Some have involved producing speciaJ resonant struc-

tures [4]– [7] and are wasteful of possibly expensive substrate

material. Less wasteful approaches [8]– [10] have involved de-

termining the perrnittivity from the measured cavity resonance

frequencies of the double metal-clad substrate prior to etching.
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